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Abstract. Cellular automata are widely used to model real-world dynamics. We show using the Domany-
Kinzel probabilistic cellular automata that alternating two supercritical dynamics can result in subcritical
dynamics in which the population dies out. The analysis of the original and reduced models reveals gen-
erality of this paradoxical behavior, which suggests that autonomous or man-made periodic or random
environmental changes can cause extinction in otherwise safe population dynamics. Our model also real-
izes another scenario for the Parrondo’s paradox to occur, namely, spatial extensions.

PACS. 02.50.Ga Markov processes – 05.50.+q Lattice theory and statistics (Ising, Potts, etc.) –
87.23.Cc Population dynamics and ecological pattern formation

1 Introduction

Ecological and sociological dynamics are often described
by systems of locally interacting agents. Cellular automata
are broadly used for modeling such dynamics to character-
ize, for example, survival probability, percolation, and crit-
ical phenomena, which are relevant to real situations [1].
Among the class of probabilistic cellular automata is the
Domany-Kinzel (DK) model, which is a two parameter
family of Markov processes on a one-dimensional lattice
with discrete time [2,3]. In this paper, we report a coun-
terintuitive phenomenon of the DK model: particles even-
tually die out when two supercritical DK dynamics alter-
nate with some appropriate orders. This behavior is robust
against parameter changes. We also analyze the reduced
dynamics such as the pair approximation and a canonical
model to guarantee that this phenomenon is preserved in
much simpler models. As a generalization, dynamic en-
vironmental changes can extinguish a population even if
the snapshot dynamics is supercritical at any given mo-
ment. These alternating DK dynamics also realize a new
scenario for the Parrondo’s paradox [4–6] to occur, that
is, introduction of the space.

2 DK model

In the DK model [2,3], each site either accompanies a
particle (denoted by •) or is empty (denoted by ◦) at any
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Fig. 1. Schematic diagram showing the DK probabilistic cel-
lular automaton.

instant. The space can be identified with a subset of the
set of integers Z, and let ξn ⊂ Z be the set of the sites that
have particles at discrete time n ∈ Z+ = {0, 1, 2, . . .}. The
stochastic evolution rule at each site x ∈ Z is indepen-
dently described by P (x ∈ ξn+1|ξn) = f(|ξn ∩ {x − 1, x +
1}|) where f(0) = 0, f(1) = p1, f(2) = p2, and (p1, p2) ∈
[0, 1]2. In other words, the probability that a particle
emerges is determined by the number of the particles in
the nearest neighborhood in the previous time, as shown
in Figure 1. Each realization of the spatiotemporal process
is expressed in the form of a configuration ξ ∈ {0, 1}S = X
with S = {s = (x, n) ∈ Z×Z+ : x+n = even}. The region
of the supercritical parameter sets (p1, p2) for which parti-
cles survive for infinite time with positive probability can
be numerically obtained, and it occupies an upper-right
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Fig. 2. (a) Trajectories of the DK model for dynamics A, with (p1, p2) = (0.52, 1) (thin lines) and those for dynamics B with
(p1, p2) = (0.76, 0.76) (thick lines). The other panels show population dynamics when we repeat (b) AB, (c) A4B, and (d)
A30B. The initial conditions for (b, c, d) are (a1(0), a2(0)) = (0.5, 0.25).

area in the p1-p2 space [2,3,7]. The DK model is equivalent
to the directed bond percolation model on a square lattice
when (p1, p2) = (p, 2p − p2) and to the directed site per-
colation model when p1 = p2 = p [2,3,7]. Another special
case is Wolfram’s rule 90 deterministic cellular automa-
ton [1] which is realized with (p1, p2) = (1, 0). The simplic-
ity of the DK model enables us to investigate interesting
properties from the viewpoint of statistical physics and ap-
plications, such as quasistationary particle density [8–12],
critical phenomena and phase transitions [2,3,8–14], sur-
vival probabilities [15], and duality [16–18].

Let us denote by Pn(·) the probability that an event
occurs at time n. Here an event means a state of consec-
utive sites, or a sequence of • and ◦. For clarity, we often
plot trajectories in the two-dimensional space spanned by
the order parameters defined with a2(n) ≡ Pn(••) and
a1(n) ≡ Pn(•◦) + Pn(◦•). With a0(n) ≡ Pn(◦◦), it fol-
lows that a1(n) ≥ 0, a2(n) ≥ 0, and a1(n) + a2(n) =
1− a0(n) ≤ 1. The origin (a1, a2) = (0, 0) is an absorbing
fixed point corresponding to the population death. In the
following numerical simulations, the lattice size is 10 000,
and the periodic boundary conditions are assumed.

With some initial conditions, trajectories of the DK
model are shown in Figure 2a for (p1, p2) = (0.52, 1) (thin
lines) and for (0.76, 0.76) (thick lines). The DK dynamics
corresponding to these parameter sets are termed dynam-
ics A and dynamics B, respectively. When p2 = 1, parti-

cles emerge or die only at kinks where • and ◦ face each
other. In this case, the dynamics of kinks are identical to
the coalescing random walk, and the entire space is even-
tually occupied by particles with a positive probability if
and only if p1 > 0.5 [7]. Therefore, dynamics A is super-
critical. On the other hand, the DK model with p1 = p2

is equivalent to the directed site percolation. Restricted
onto this line, p1 = p2 = 0.75 is a mathematically rigor-
ous upper bound for the subcritical regime [19], whereas
the critical value is numerically estimated to be about
p1 = p2 = 0.7055 [20,21]. Because of the attractiveness
(p1 ≤ p2), the natural intuition that more particles are
likely to survive with larger p1 and p2 actually holds [7,15].
Therefore, dynamics B is also supercritical. Accordingly,
trajectories of dynamics A converge to the all • state, and
those of B converge to the stochastic stable fixed point
(a1, a2) ∼= (0.39, 0.42).

3 Population death in alternating DK
dynamics

Next, we alternatively apply A and B. A typical trajec-
tory is shown in Figure 2b with the Bernoulli initial dis-
tribution with density 0.5, which yields (a1(0), a2(0)) =
(0.5, 0.25). Surprisingly, particles eventually die out. This
behavior is not sensitive to the choice of initial conditions.
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Fig. 3. Dynamics of the population size when we repeat (a) AkBk with k = 1 (thinnest line), 2, 3, and 4 (thickest line), (b) AkB
with k = 1 (thinnest), 2, 4, 15, 30 (thickest), and (c) ABk with k = 1 (thinnest), 2, 3 and 4 (thickest). In (b), the lowermost
line corresponds to k = 4. In (c), the upper lines, which are nearly superimposed, correspond to k = 1 and 3, whereas the lower
lines correspond to k = 2 and 4.

It also persists against changes in p1 or p2 as far as the in-
dividual dynamics are not extremely supercritical and the
stable stochastic fixed points for the two systems are sepa-
rated enough. Especially, extensive numerical simulations
suggest that this population death is enhanced when one
of the component dynamics is nonattractive, or p1 > p2.

An important cause for the population death is how
the trajectories of dynamics A and those of dynamics B
cross. As shown in Figure 2a, if a state in the a1-a2 space
evolves along a trajectory of dynamics A, in terms of dy-
namics B, the state gradually slides down to trajectories
associated with initial conditions with fewer particles. In
other words, from the viewpoint of dynamics A (resp. B),
the population once decreases under dynamics B (resp.
A) before it revives and reaches the nontrivial stable fixed
point. Therefore, by switching the dynamics between A
to B before the population effectively starts to grow, the
number of the particles gradually decrease to zero. Sur-
vival results if A or B is applied long enough before switch-
ing to the other. To demonstrate this, we confine ourselves
to the cases in which a block of k A’s and k B’s are al-
ternatively applied, which we denote by AkBk. As shown
in Figure 3a, the population is more likely to survive as k
increases.

The population death by alternation is an example of
the Parrondo’s game in which a combination of two losing
(winning) stochastic games can counterintuitively end up

with a winning (losing) game [4–6,22]. In this context,
the results in Figure 3a agree with those for the original
Parrondo’s game in which the paradoxical effect becomes
small as k is raised [6]. A more general concern is how
the arrangement of A and B affects the upshot. Since it
appears quite difficult to derive the optimal ordering of
A and B among all the possible sequences [6,22], we only
deal with some representative cases.

The population dynamics when a chain of A is periodi-
cally punctuated by just one B, which is denoted by AkB,
are shown in Figure 3b. This figure together with addi-
tional numerical simulations suggests that the paradoxical
effect is most manifested, or the population dies out most
rapidly, with k = 4. This is presumably because dynam-
ics B correspond to the critical line of the attractiveness
(p1 = p2). For this reason, in an upper-left region in the
a1-a2 space, an application of the near-nonattractive B
kills more particles when there exist more particles. This
view is supported by Figures 2b and 2c in which we com-
pare the dynamics with AB and those with A4B. Then,
the convergence to (a1, a2) = (0, 0) is accelerated by a
larger k in a small k regime. However, with a much larger
k, the number of particles changes little for most of the
time (Fig. 2d). In this regime, the population death is
slowed down as k increases.

For sequences in the form ABk, the parity effect is
manifested. As shown in Figure 3c, the population death
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Fig. 4. Population dynamics when A and B randomly appear with probability r and 1− r, respectively. (a) r = 0.02, 0.05, 0.1,
0.2 (from upper to lower lines), and (b) r = 0.2, 0.4, 0.5, 0.75 (from lower to upper lines).

is faster when k is even. This is again because dynamics
B is nearly nonattractive. As is prominent in nonattrac-
tive DK dynamics, the motion in the a1-a2 space under
dynamics B is somewhat sensitive to the current state.
More specifically, simple repetition of B yields a damped
oscillation in the early stage. Therefore, if the initial state
is located in a upper-left region, the number of particles
drops more when B is repeated even times before being
interrupted by one A.

The random arrangement of A and B is also of in-
terest [4,6,22] because real environments can be random
rather than perfectly periodic. To mimic simple random
environments, we choose A and B independently at each
time step with probability r and 1 − r, respectively. Ob-
viously, the population death does not occur with r = 0
or with r = 1, which prescribes the sequence purely of
B and that of A, respectively. Figure 4 and the exten-
sive parameter search reveal that the paradoxical effect is
maximized when r ∼= 0.2. This value coincides with the
optimal mixing ratio for the family of deterministic se-
quences investigated above, namely, A4B.

It is also essential for the paradox that population
change rates are proportional to the population size as
shown in Figure 5 (crosses). Owing to this property, the
size of the population exponentially shrinks to a very small
level (Figs. 2–4). Then, particles become extinct in finite
time because of stochasticity and the absolute stability of
the fixed point (a1, a2) = (0, 0). If change rates are too
high even for minute population mass, a trajectory that
happens to have approached the origin more likely escape
the vicinity of the origin to avoid the population deaths.

4 Pair approximation

To take a closer look at the paradox, we analyze the
deterministic dynamics derived by the pair approxima-
tion of the DK model, which we call the PA dynam-
ics [9–12]. In the pair approximation, any events at two
sites separated by a distance more than one are sup-
posed to be independent of each other. For example,
Pn(•|◦•) = Pn(•◦•)/Pn(◦•) is approximated by Pn(•|◦) =
Pn(•◦)/Pn(◦), where Pn(·|·) denotes the conditional prob-
ability. Accordingly, probabilities of any events involving
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Fig. 5. Population change rates in terms of the population
size for the DK (crosses), PA (circles), and canonical (squares)
dynamics. The change rates for the DK and PA dynamics are
measured by the Euclidean distances of two points with unit
time difference in the a1–a2 space. The population size is equal
to a1(t)/2 + a2(t) for the DK and PA dynamics and is defined

to be
√

x2 + y2 for the canonical dynamics.

three or more consecutive sites are decomposed into one-
or two-site probabilities. With this approximation, the
two-dimensional PA dynamics are written as follows:

a2(n + 1) = p2
2Pn(• • •) + p1p2{Pn(• • ◦) + Pn(◦ • •)}

+ p2
1{Pn(• ◦ •) + Pn(◦ • ◦)}

∼= (2p2a2(n) + p1a1(n))2

4b1(n)
+

p2
1a1(n)2

4b0(n)
, (1)

a1(n + 1) ∼= p2(1 − p2)
2a2(n)2

b1(n)

+ (p1 + p2 − 2p1p2)
a1(n)a2(n)

b1(n)

+ p1(1 − p1)
a1(n)2

2b0(n)b1(n)
+ p1

a1(n)a0(n)
b0(n)

,

(2)

where b1(n) = a2(n) + a1(n)/2, b0(n) = 1 − b1(n) and
a0(n) = 1− a1(n)− a2(n). Trajectories of the PA dynam-
ics are shown in Figure 6a for two sets of supercritical
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Fig. 6. (a) Trajectories of the PA dynamics for (p1, p2) = (0.52, 1) (thin lines) and those for (p1, p2) = (0.66, 0.66) (thick lines).
(b) Population dynamics in the alternating PA dynamics starting from (a1(0), a2(0)) = (0.5, 0.25).

parameter sets: (p1, p2) = (0.52, 1) (thin lines) and (0.66,
0.66) (thick lines). In accordance with Figure 2a, the in-
dividual PA dynamics own stable fixed points near (0, 1)
and (0.308, 0.145). However, as shown in Figure 6b, the
population dies out when they alternate. Although the
supercritical parameter region of the PA dynamics devi-
ates from that of the DK counterparts, the results for the
PA dynamics qualitatively agree with those for the DK
dynamics shown in Figure 2.

The Parrondo’s paradox is unlikely to happen in one-
dimensional systems since they lack auxiliary dimen-
sions that counteract the seeming tendency of population
increase. To demonstrate this, let us imagine the simplistic
mean-field approximation in which a joint probability is
approximated by a product of single-site probabilities (e.g.
Pn(◦•) ∼= Pn(◦)Pn(•)). The approximate one-dimensional
sytem is written as

b1(n + 1) = p2b1(n)2 + 2p1b1(n)(1 − b1(n)), (3)

which has fixed points b1 = 0 and b1 = (2p1 − 1)/(2p1 −
p2) [9–12]. Let us pick two mean-field dynamical systems
so that their nontrivial fixed points are positive and sta-
ble, with 2p1 > p2 and p1 > 1/2 satisfied. Then, when two
mean-field dynamics alternate, the particle density b1(n)
just moves between these two fixed points in the long run.
Accordingly, the population never dies out, and no para-
doxical phenomenon occurs.

5 Canonical model

To generalize the Parrondo’s paradox found for the DK
and PA dynamics, we construct a simple canonical model
with dimension two, which is the presumed minimal de-
gree of freedom for the paradox. As we have mentioned,
the relevant features of the DK and PA dynamics can be
summarized as follows.

(i) Trajectories of dynamics A and those of dynamics B
transverse in the way as shown in Figures 2a and 6a.
More specifically, in the a1-a2 space, the slope of a
trajectory of dynamics A (thin lines) is less negative
than that of a trajectory of dynamics B (thick lines)
at the crossing point, at least in a certain region.

(ii) Each of A and B is not applied too many times succes-
sively. In other words, k in the sequence AkBk, AkB,
or ABk should be small enough, as explained with Fig-
ures 2d and 3a.

(iii) Population change rates are proportional to the pop-
ulation size. To weaken the condition may result in the
same conclusion just with a different convergence rate.
Here we assume this linearity for our canonical model.
The paradox also relies on the following implicit as-

sumptions.
(iv) Dynamics A and dynamics B have sufficiently sepa-

rated nontrivial fixed points.
(v) The origin is the deterministically unstable but

stochastically reachable fixed point for both A and B.
Figures 2a and 6a further indicate that the origin and

the nontrivial fixed point are connected by applying B
infinitely many times (thick lines). However, it is not true
for A (thin lines) because A is nongeneric in the sense that
all the points on the a2 axis are fixed points. Actually, no
point with a1 = 0 and 0 < a2 < 1 is realizable because it
would mean that two consecutive sites take state •• and
◦◦ with positive probabilities but not •◦ or ◦•. The total
size of the boundaries between clusters of • and those of
◦, or a1(n), determines the population change rates [7]. It
declines to zero as a point in the a1-a2 space approaches
the a2 axis.

In fact, we have chosen (p1, p2)=(0.52, 1) for dynam-
ics A just because the obtained DK dynamics is rigor-
ously supercritical. The paradoxical dynamics appear ro-
bustly against changes in p1 and p2, which can make the
dynamics generic. With this in mind, we construct a two-
dimensional continuous-time system that satisfies the con-
ditions listed above. We propose to alternate two dynam-
ical systems:
dynamics A

ẋ = −x,

ẏ = −λy(1 − y),

and
dynamics B

ẋ = −λx(1 − x),
ẏ = −y,
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Fig. 7. Trajectories of dynamics A and those of dynamics B of
the canonical model (thin lines), superimposed by those of the
alternating dynamics starting from (x, y) = (0.5, 0.5) (thick
line).

where 0 < x, y < 1. The properties (iii), (iv), and (v)
are obviously satisfied, with (iii) also supported by Fig-
ure 5 (squares). Both dynamics A and B have a saddle
at the origin. The point (0, 1) of A and (1, 0) of B are
stable equilibria, and each of them is connected to the
origin by a heteroclinic orbit. The property (i) is satisfied
if 0 < λ < 1. To guarantee (ii), we set λ = 0.3 and the
duration of each dynamics equal to 0.15. Figure 7 sum-
marizes flows of the individual dynamics (thin lines) and
those of the alternating dynamics (thick lines). We again
observe the paradox that the alternating dynamics lead
the state toward the origin.

6 Conclusions

We have shown using the DK model and its simplifications
that mixtures of two supercritical dynamics can yield sub-
critical dynamics in which the population dies out. This
counterintuitive behavior occurs if individual component
dynamics have at least dimension two and satisfy certain
criteria. The property (i) is characteristic of the DK or
the canonical model, and it agrees with some natural oc-
casions but not with others [23]. The other four require-
ments do not seem to spoil the reality. The properties (iii)
and (v) are satisfied when production rates are primarily
proportional to the population mass, which is quite com-
mon for ecological and social systems [23]. Periodical and
random environmental changes comply with (ii) and (iv).
Such changes may be also caused by continual, periodic,
or random human control of a system with the aim of
moving the stable fixed point to more desirable one. How-
ever, our results indicate that environmental changes or
oddly managed control measures can cause a total disaster
even if the system instantaneously stays in a supercritical
‘good’ regime all the time. The other way round, there is
a general expect that a situation that is subcritical at any

A

B

a b

c d e

f g h i

Fig. 8. Alternating dynamics with sequence AB compared
with standard 3-neighborhood PCA.

moment can be changed into a supercritical one with ap-
propriate controls, which is originally illuminated by the
Parrondo’s paradox [4–6,22]. In the context of the Par-
rondo’s paradox, our model provides another mechanism
of its occurrence in addition to inhomogeneous game rules
or players with memory [5], namely, spatial extension.

Lastly, we can regard a block of sequence of A and B,
such as AkB and ABk, as a transformation done in just
one step. By doing so, the alternating DK model seems
similar to m-neighborhood probabilistic cellular automata
(PCA) with m ≥ 3. For PCA, phase diagrams have been
studied in simple cases where the dynamical rule depends
only on the number of particles in the neighborhood with
m = 3 [13,14]. However, the model proposed here is
more complex even with the simplest sequence ABAB . . .,
which should be compared to PCA with m = 3. One
reason is that outcomes depend not only on the number
but also on the arrangements of particles in a neighbor-
hood [8]. For instance, it is easy to verify Pn(•| • ◦•) 	=
Pn(•|••◦). More importantly, the alternating DK dynam-
ics are not special cases of finite-range PCA. To illustrate
this, let us consider ABAB . . . In Figure 8, the state of site
a, which we write ξ(a) depends on ξ(f), ξ(g), and ξ(h),
while ξ(g), ξ(h), and ξ(i) put together determine ξ(b). In
3-neighborhood PCA, there exists no intermediate layer of
sites such as c, d, and e. Therefore, once ξ(f), ξ(g), ξ(h),
and ξ(i) are given, ξ(a) and ξ(b) are independant. On the
other hand, in our model, ξ(a) and ξ(b) are partially corre-
lated, or correlated even conditioned by ξ(f), ξ(g), ξ(h),
and ξ(i). This is because both ξ(a) and ξ(b) depend on
ξ(d). By the same token, the infinite-range correlation is
generated just after single application of AB, which pro-
hibits use of powerful duality equations [16–18]. In this
sense, our model stipulates a class of infinite particle sys-
tems different from ordinary PCA. However, on the anal-
ogy of the Parrondo’s paradox, the phenomena reported
in this paper may hold for PCA and more general alter-
nating dynamics with general neighborhood sizes.
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10. T. Tomé, Physica A 212, 99 (1994)
11. Y. Harada, H. Ezoe, Y. Iwasa, H. Matsuda, K. Sato, Theor.

Popul. Biol. 48, 65 (1995)

12. A.P.F. Atman, R. Dickman, Phys. Rev. E 66, 046135
(2002)

13. F. Bagnoli, N. Boccara, R. Rechtman, Phys. Rev. E 63,
046116 (2001)

14. A.P.F. Atman, R. Dickman, J.G. Moreira, Phys. Rev. E
67, 016107 (2003)

15. M. Katori, N. Konno, H. Tanemura, J. Stat. Phys. 99, 603
(2000)

16. N. Konno, J. Stat. Phys. 106, 915 (2002)
17. N. Konno, J. Stat. Phys. 106, 923 (2002)
18. M. Katori, N. Konno, A. Sudbury, H. Tanemura. J. Theo.

Prob. 17 131 (2004)
19. T.M. Liggett, Ann. Applied. Prob. 5, 613 (1995)
20. R.N. Onody, U.P.C. Neves, J. Phys. A 25, 6609 (1992)
21. I. Jensen, A.J. Guttmann, J. Phys. A 28, 4813 (1995)
22. P. Amengual, A. Allison, R. Toral, D. Abbott, Proc. R.

Soc. Lond. A 460, 2269 (2004)
23. J.D. Murray, Mathematical Biology, I: An Introduction,

Third Edition (Springer-Verlag, New York, 2002)


